新型耐温耐盐三元共聚物稳泡性能评价及其作用机理的分子动力学模拟
DOI:
作者:
作者单位:

1.低渗透油气田勘探开发国家工程实验室;2.中国石油长庆油田分公司第五采油厂;3.中国地质大学武汉资源学院

作者简介:

通讯作者:

中图分类号:

TE357

基金项目:

国家自然科学基金“基于微观流变力学原理的单个凝胶微球长期变形与运移机制研究”(项目编号:52204054);陕西省创新能力支撑计划“非常规油藏低碳环保提高采收率技术创新团队”)(项目编号:2023-CX-TD-31)


Evaluation on the foam stabilization performance of novel temperature- and salt-resistant terpolymer and molecular dynamics simulation to elucidate the mechanism
Author:
Affiliation:

School of Earth Resources,China University of Geosciences Wuhan

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对高温高矿化度油藏中泡沫稳定性差的问题,利用丙烯酰胺(AM)、2-丙烯酰氨基-2-甲基-1-丙烷磺酸(AMPS)和丙烯酸(AA)三种单体,采用自由基聚合的方式,合成新型耐温耐盐三元共聚物稳泡剂AMPA。通过与阴离子表面活性α-烯烃磺酸钠(AOS)和非离子表面活性剂辛基酚聚氧乙烯醚(OP-40)复配,在80 ℃、100000 ppm矿化度条件下提高了CO2泡沫的稳定性。结果表明,AOS和OP-40质量比为5:5、表面活性剂总浓度1 wt%、稳泡剂浓度0.35 wt%时AMPA泡沫体系起泡体积(420 mL)和半衰期(35.6 min)表现更好。相较于部分水解聚丙烯酰胺(HPAM)体系,AMPA体系在高温高盐条件下半衰期提升2.3倍。通过分子动力学模拟研究两种体系界面特性,结果显示AMPA与表面活性剂之间具有更强的协同作用,形成更厚的水化层和气体吸附层,降低液膜排液速率、延缓气体扩散,同时大幅降低界面张力和界面形成能,具有更稳定的界面,有效提升泡沫性能。研究结果为后续新型稳泡剂分子设计提供了理论基础。

    Abstract:

    In this study, to overcome the challenge of poor foam stability in high-temperature and high-salinity reservoirs, a novel temperature- and salt-resistant terpolymer foam stabilizer (AMPA) was synthesized via free-radical polymerization of acrylamide (AM), 2-acryloylamino-2-methyl-1-propanesulfonic acid (AMPS), and acrylic acid (AA). The compound was blended with anionic surfactant sodium α-olefin sulfonate (AOS) and nonionic surfactant octylphenol polyoxyethylene ether (OP-40) to enhance CO? foam stability at 80?°C and 100,000?ppm salinity. Experimental results demonstrated that the AMPA foam system achieved superior foam volume (420 ?mL) and half-life (35.6 ?min) at a 1:1 mass ratio of AOS to OP-40, with a total surfactant concentration of 1? wt% and an AMPA concentration of 0.35 ?wt%. Compared with the partially hydrolyzed polyacrylamide (HPAM) system, the foam half-life with AMPA was extended by 2.3 times under high-temperature and high-salinity conditions. Molecular dynamics simulations revealed that AMPA exhibited stronger synergistic interactions with surfactants, resulting in thicker hydration and gas adsorption layers, reduced liquid film drainage rate, and slower gas diffusion. Additionally, AMPA significantly decreased interfacial tension and formation energy, leading to more stable interfaces and enhanced foam stability. These findings provide a theoretical foundation for the molecular design of next-generation foam stabilizers.

    参考文献
    相似文献
    引证文献
引用本文
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期: 2025-06-30
  • 最后修改日期: 2025-07-30
  • 录用日期: 2025-09-19
  • 在线发布日期:
  • 出版日期:
点击这里给我发消息

点击这里给我发消息