直流电压对油水界面张力及其化学特性的影响
DOI:
作者:
作者单位:

1.油气资源与探测国家重点实验室;2.中国石油大港油田分公司采油工艺研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金“海相深层油气富集机理与关键工程技术基础研究”(U19B6003-03-04) ;国家自然科学基金面上项目“致密油储层注 CO2与直流电场耦合提高采收率机理研究”(51974330)


The influence of direct current voltage on the interfacial tension and chemical properties of oil-water interface
Author:
Affiliation:

National Key Laboratory of Petroleum Resources and EngineeringChina University of PetroleumBeijing,Beijing

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为准确评估直流电压对油水界面张力的影响,本研究进行了系统的油水电解实验,探讨了不同电压条件下油水界面张力的变化及其机理。实验选择了稠油和CaCl2水型,分别应用0V、5V、10V和15V的直流电压进行处理。通过测定水相的pH值、离子含量,以及分析油相的组分和官能团含量,深入探讨了直流电压降低油水界面张力的潜在原理。结果表明,随着直流电压的增大,油水界面张力显著降低,最大降幅达42.66%。在不同电压下油水界面张力分别为31.93%、27.05%、21.89%和18.31%。此外,CaCl2水型中的Ca2+溶解度随着温度升高而减小,从2.81 mg/L降至2.25 mg/L,这削弱了直流电压对油水界面的影响。然而,Na+含量则从0.50 mg/L升高至0.72 mg/L,这有利于界面张力的进一步降低。在电化学效应的影响下,水相溶液的pH值由7.32升高至10.96,碱性条件促进了原油中酸性物质的反应,生成了表面活性物质羧酸盐。通过傅里叶红外光谱分析,羧酸盐的归一化含量在不同电压下分别为1.40、1.51、1.90和4.11,表明羧酸盐含量的增加进一步促进了界面张力的下降。此外,电化学反应促进了原油组成的简化。实验显示,沥青质和树脂的含量在不同电压下分别为18.63%和12.96%、14.62%和12.02%、13.26%和10.25%、12.11%和10.06%,而饱和烃的含量分别为47.57%、51.00%、54.81%和55.89%。本研究增进了对直流电场降低油水界面张力机制的理解,为推进直流电场在提高原油采收率方面的应用提供了理论支持。通过对电化学效应和界面活性物质的形成机制的深入探讨,为实际油田应用中的直流电场技术优化提供了宝贵的参考。

    Abstract:

    To accurately evaluate the effect of DC voltage on oil-water interfacial tension, this study conducted a systematic oil-water electrolysis experiment to explore the changes and mechanisms of oil-water interfacial tension under different voltage conditions. The experiment selected heavy oil and CaCl2 water type, and applied DC voltages of 0V, 5V, 10V, and 15V for treatment, respectively. By measuring the pH value and ion content of the aqueous phase, as well as analyzing the composition and functional group content of the oil phase, the potential principle of reducing oil-water interfacial tension by direct current voltage was explored in depth. The results showed that with the increase of DC voltage, the interfacial tension between oil and water significantly decreased, with a maximum reduction of 42.66%. The interfacial tension between oil and water at different voltages is 31.93%, 27.05%, 21.89%, and 18.31%, respectively. In addition, the solubility of Ca2+in CaCl2 aqueous form decreases with increasing temperature, from 2.81 mg/L to 2.25 mg/L, which weakens the influence of DC voltage on the oil-water interface. However, the Na+ content increased from 0.50 mg/L to 0.72 mg/L, which is beneficial for further reducing interfacial tension. Under the influence of electrochemical effects, the pH value of the aqueous solution increased from 7.32 to 10.96, and alkaline conditions promoted the reaction of acidic substances in crude oil, generating surface active substances such as carboxylic acid salts. Through Fourier transform infrared spectroscopy analysis, the normalized content of carboxylate was 1.40, 1.51, 1.90, and 4.11 at different voltages, indicating that the increase in carboxylate content further promoted the decrease in interfacial tension. In addition, electrochemical reactions promote the simplification of crude oil composition. The experiment showed that the content of asphalt and resin was 18.63% and 12.96%, 14.62% and 12.02%, 13.26% and 10.25%, 12.11% and 10.06%, respectively, under different voltages, while the content of saturated hydrocarbons was 47.57%, 51.00%, 54.81% and 55.89%, respectively. This study enhances the understanding of the mechanism by which direct current electric fields reduce oil-water interfacial tension, providing theoretical support for promoting the application of direct current electric fields in improving crude oil recovery. Through in-depth exploration of the formation mechanisms of electrochemical effects and interfacial active substances, valuable references have been provided for the optimization of direct current electric field technology in practical oilfield applications.

    参考文献
    相似文献
    引证文献
引用本文
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期: 2024-08-20
  • 最后修改日期: 2025-01-17
  • 录用日期: 2025-02-09
  • 在线发布日期:
  • 出版日期:
点击这里给我发消息

点击这里给我发消息