原油活性组分及相互作用对乳状液稳定性影响的研究进展
作者:
作者单位:

1.西南石油大学油气藏地质及开发工程国家重点实验室;2.西南石油大学

基金项目:

国家自然科学基金“黏度可控的原位增黏体系构建及高效驱油机理研究”(项目编号U19B2010)。


Research Progress of Active Components in Crude Oil and Interaction on Influence of Emulsion Stability
Affiliation:

Southwest Petroleum University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    原油生产过程中因活性组分的存在易使原油形成大量乳状液,主要包括沥青质、胶质、石油酸、蜡等。基于这些活性组分的组成与存在状态,阐述了各活性组分对乳状液稳定性的影响机制,重点剖析了各活性组分与沥青质间的相互作用及其对乳状液稳定性的影响。指出沥青质是构成界面膜的主要成分,适量的胶质能对沥青质起到协同乳化的作用。不同相对分子质量的石油酸与沥青质相互作用的结果也不同,蜡组分在结晶或与沥青质相互作用时能增强界面膜的强度。最后提出了目前存在的问题,并展望了今后的发展趋势。

    Abstract:

    A large amount of emulsion is easily formed in the process of crude oil production due to the existence of active components, including asphaltene, resin, petroleum acid, and wax. Based on the composition and existing state of active components in crude oil, the influence mechanism of each active component on the emulsion stability was described. The interaction between active components and asphaltene with their influence on emulsion stability is summarized. Among the active components of crude oil, these are pointed out asphaltene is the main component of the interfacial film, and suitable resin with asphaltene can strengthen emulsifying effect. The results between carboxylic organic acid and asphaltene are various owing to different relative molecular weights, and the wax can enhance the strength of the interfacial film when they crystallize or interact with asphaltene. Meanwhile, current problems and future development directions are prospected.

    参考文献
    [1] RASHID Z, WILFRED C D, GNANASUNDARAM N, et al. A comprehensive review on the recent advances on the petroleum asphaltene aggregation[J]. Journal of Petroleum Science and Engineering, 2019, 176: 249-268.
    [2] UMAR A A, SAAID I B M, SULAIMON A A, et al. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids[J]. Journal of Petroleum Science and Engineering, 2018, 165: 673-690.
    [3] STORM D A, SHEU E Y. Characterization of colloidal asphaltenic particles in heavy oil[J]. Fuel, 1995, 74(08): 1140-1145.
    [4] MOSCHOPEDIS S E, FRYER J F, SPEIGHT J G. Investigation of the carbonyl functions in a resin fraction from Athabasca bitumen[J]. Fuel, 1976, 55(3): 184-186.
    [5] ALVAREZ-RAMíREZ F, RUIZ-MORALES Y. Island versus Archipelago Architecture for Asphaltenes: Polycyclic Aromatic Hydrocarbon Dimer Theoretical Studies[J]. Energy Fuels, 2013, 27(04): 1791–1808.
    [6] KUZNICKI T, MASLIYAH J, BHATTACHARJEE S. Molecular Dynamics Study of Model Molecules Resembling Asphaltene Like Structures in Aqueous Organic Solvent Systems[J]. Energy Fuels, 2008, 22(04): 2379–2389.
    [7] YEN T. Structure of Petroleum Asphaltene and Its Significance[J]. Energy Sources, 1974, 1(04): 447-463.
    [8] ALI M, ALQAM M. The role of asphaltenes, resins and other solids in the stabilization of water in oil emulsions and its effects on oil production in Saudi oil fields[J]. Fuel, 2000, 79(11): 1309-1316.
    [9] GOUAL L, SEDGHI M, WANG X, et al. Asphaltene Aggregation and Impact of Alkylphenols[J]. Langmuir: the ACS journal of surfaces and colloids, 2014, 30(19): 5394-5403.
    [10] SCHULER B, MEYER G, PE?A D, et al. Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy[J]. Journal of the American Chemical Society, 2015, 137(31): 9870-9876.
    [11] TANAKA R, SATO E, HUNT J, et al. Characterization of Asphaltene Aggregates Using X-ray Diffraction and Small-Angle X ray Scattering[J]. Energy Fuels, 2004, 18(04): 1118-1125.
    [12] SHEU E, TAR M, STORM D A. Interfacial Properties of Asphaltenes[J]. Fuel, 1992, 71(11): 1277-1281.
    [13] NELLENSTEYN F J. The constitution of asphalt[J]. Analytical and Bioanalytical Chemistry, 1924, 10: 311-325.
    [14] MACK C. Colloid Chemistry of Asphalts[J]. The Journal of Physical Chemistry, 2002, 36(07): 2901-2914.
    [15] PFEIFFER J, SAAL R. Asphaltic Bitumen as Colloid System[J]. The Journal of Physical Chemistry, 2002, 44(02): 139-149.
    [16] 戈丹妮. 胶质亚组分与沥青质的相互作用机理研究[D]. 中国石油大学(华东), 2014.
    [17] 樊西惊. 石油胶态分散体的稳定性[J]. 油田化学, 1999, 16(01): 73-77.
    [18] 于志敏. 渣油掺炼裂解重油混合相分离行为的研究[D]. 中国石油大学(华东), 2009.
    [19] BUENROSTRO-GONZALEZ E, ANDERSEN S, GARCIA-MARTINEZ J, et al. Solubility/Molecular Structure Relationships of Asphaltenes in Polar and Nonpolar Media[J]. Energy Fuels, 2002, 16(03): 732-741.
    [20] 王巧平. 原油乳状液界面性质与油水分离的研究[D]. 中国石油大学(华东), 2018.
    [21] ACEVEDO S, CORDERO M T J, CARRIER H, et al. Trapping of paraffin and other compounds by asphaltenes detected by laser desorption ionization-time of flight mass spectrometry (LDI-TOF MS): Role of A1 and A2 asphaltene fractions in this trapping[J]. Energy Fuels, 2009, 23(02): 842-848.
    [22] 孙胜男. 一步和分步分离法对沥青质结构和溶解性的比较研究[D]. 中国石油大学(华东), 2018.
    [23] 季俣汐. 塔河稠油活性组分对油水界面性质和乳状液稳定性的影响[D]. 中国石油大学(北京), 2016.
    [24] YEN T, ERDMAN J, POLLACK S. Investigation of the Structure of Petroleum Asphaltenes by X-Ray Diffraction[J]. Analytical Chemistry, 1961, 33(11): 1587-1594.
    [25] LEON O, CONTRERAS E, ROGEL E, et al. Adsorption of Native Resins on Asphaltene Particles: A Correlation between Adsorption and Activity[J]. Langmuir, 2002, 18(13): 5106-5112.
    [26] 白金美. 稠油组分及乳化剂对油水界面性质影响的研究[D]. 中国石油大学(华东), 2009.
    [27] 孙成香. 原油及其组分乳状液界面性质与稳定性的研究[D]. 中国石油大学(华东),, 2010.
    [28] 田哲熙. 辽河油田稠油乳状液稳定性及破乳脱水机理研究[D]. 东北石油大学, 2019.
    [29] 林伟昌. 环烷酸催化转化研究[D]. 中国石油大学, 2010.
    [30] BRANDAL ?, SJ?BLOM J. Interfacial Behavior of Naphthenic Acids and Multivalent Cations in Systems with Oil and Water. II: Formation and Stability of Metal Naphthenate Films at Oil‐Water Interfaces[J]. Journal of Dispersion Science and Technology, 2005, 26(01): 53-58.
    [31] ARLA D, SINQUIN A, PALERMO T, et al. Influence of pH and Water Content on the Type and Stability of Acidic Crude Oil Emulsions[J]. Energy Fuels, 2007, 21(03): 1337-1342.
    [32] ASKE N, KALLEVIK H, SJ?BLOM J. Water-in-Crude Oil Emulsion Stability Studied by Critical Electric Field Measurements. Correlation to Physico-Chemical Parameters and Near-Infrared Spectroscopy[J]. Journal of Petroleum Science and Engineering, 2002, 36(1-2): 1-17.
    [33] 宋先雨, 方申文, 陶俊, 等. 环烷酸对原油乳状液稳定性影响的研究进展[J]. 精细石油化工, 2015, 32(1): 47-52.
    [34] ALVARADO V, WANG X, MORADI M. Role of Acid Components and Asphaltenes in Wyoming Water-in-Crude Oil Emulsions[J]. Energy Fuels, 2011, 25(10): 4606-4613.
    [35] 周泽婷. 蜡在油水界面的吸附对油包水乳状液性质的影响研究[D]. 中国石油大学(北京), 2018.
    [36] 张海燕, 孙学文, 赵锁奇, 等. 原油各种组分对油水乳状液稳定性的影响[J]. 油田化学, 2009, 26(03): 344-350.
    [37] 李明远, 俎永平. 原油乳状液稳定性研究(蜡与原油乳状液稳定性)[J]. 油田地面工程, 1997(02): 1-3+15.
    [38] BOBRA M. Water-In-Oil Emulsification: A Physicochemical Study[J]. International Oil Spill Conference Proceedings, 1991, 41(01): 483-488.
    [39] 代佳林. 胶质和沥青质对含蜡模拟油胶凝特性影响的研究[D]. 中国石油大学(北京), 2019.
    [40] 谭英杰, 鲁镇语, 姜卉, 等. 沥青质对结蜡作用影响的研究进展[J]. 油田化学, 2018, 35(04): 757-760.
    相似文献
    引证文献
    引证文献 [0]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
文章指标
  • 点击次数:431
  • 下载次数: 950
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期: 2021-08-24
  • 最后修改日期: 2021-10-11
  • 录用日期: 2021-10-18
  • 在线发布日期: 2022-03-11
点击这里给我发消息

点击这里给我发消息